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Goal of this Presentation

Provide a roadmap of different classical and modern theorems in the
Approximation theory of Neural Networks

Elementary Traditional

More celebrated:
Approximation Theorems

Universal Approximation Theorem

|

Univariate Approximation Multivariate Approximation
with with
one hidden layer

Study the behaviour of Neural Networks itself: When does it become
an universal approximator?

- Study of NN near ini
initialisation

Fitting continuous functions over
compact sets in uniform norm with
a single hidden layer

two hidden layers

lisation and their taylor approximation at random

- Invoke tools such as kernel, feature maps and feature spaces
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Approximation of univariate real-valued functions with
neural networks

Suppose g : R — R is p-Lipschitz. For any ¢ > 0, there exists a 2 layer
network f with [Z] threshold nodes z + 1[,~q] such that

sup |f(x) — g(x)| < «.
x€[0,1]

/ 8(x)
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o Discretise the x-axis interval [0, 1] using the step size <
P

o Let m be the number of subintervals in [0, 1]. So, m := [£]

o Let b, := ’/—; So, the interval [0, 1] is partitioned by
P= {bo7 by, by, ..., bm—l} for i € {O, 1,2,....m— 1}

JEe)
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Define:

and
aj := g(bi) — g(bi-1).
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Proof

We define f as follows
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We shall prove the following:

@ satisfies the condition

sup [f(x) —g(x)| <<,
x€[0,1]

@ f(x) can be represented as a 2 layer network with [Z] threshold
nodes.
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lg(x) = F(x)| = |g(x) — g(bk) + g(bi) — F(bx) + F(bk) — F(x)|
< |g(x) — g(bi)| + |8 (bx) — F(bi)| + |7 (bx) — F(x)]

k
= plx — byl + g (be) = Y _ail +0
i=0
k
< p(%) +1g(bx) — &(bo) — > (g(bi) — (bi-1))|
i=1

- €.
Hence, we have showed that f satisfies the condition

sup [f(x) — g(x)| < «.
x€[0,1]
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f as a Neural Network

1,>p = H(x — b), where H(x) denotes the Heaviside activation function:

10

y = H(x) o

Figure 1. Heaviside Function

So,
m—1
f(X) = a,-lxzb,.
i=0
m—1
= aiH(x — bj)
i=0
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Visual Representation of f as a Neural Network

Am-1

We can see that there are m neurons in the hidden layer. Thus, the depth
of the network is m = [£].
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Building a Step function for the Multivariate Case

Let g : RY — R be a continuous function and an < > 0 be given, and
choose § > 0 so that ||x — x'||oe < & implies |g(x) — g(x')| < . Let any
set U C RY be given, along with a partition P of U into rectangles
(product of intervals) P = (Ri, Rz, ..., Ry) with all sides lengths not
exceeding 0. Then, there exist scalars (cv1, ..., y) such that

sup [g(x) — h(x)] <,
xeU

where h(x) = SN, 011g (x).
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For each R; in the partition P, pick an arbitrary x; € R; and set
a;:= g(x;). Then,

N

N
h(x) = cilg(x) =Y g(x)1r(x)
i=1

i=1

Now, we have to show that the function h constructed from the set of «;s
arbitrarily picked satisfies the condition:

sup |g(x) — h(x)| < e.
xey
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supxeu [8(x) = M(X)| = supje(a,.. v} SUPxer; (x) — h(x)|

c, =3
Rs Ry
b,=2
Ry R,
a, =1
a =1 by =2 c1=3
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Thus, we have:

sup [g(x) — h(x)| = sup sup [g(x) — h(x)|

xeU ie{l,..,N} xeR;

= sup sup [g(x) — g(xi) +&(x) — h(x)|
ie{1,.,N} xeR;

< sup sup(lg(x) —g(xi)| + lg(xi) — h(x)])
ie{l,.,N} xeR;

< sup sup(c+ [g(xi) — i)
ie{l,..,N} xeR;

= c.
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Let g : R? — R be a continuous function and an « > 0 be given, and
choose § > 0 so that ||x — X ||oe < & implies |g(x) — g(x')| < . Then,
there exists a 3-layered network f with Q((Sld) RelL U with

[ 1760 gl < 2
[0,1]¢
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Let P denote a partition of [0,2)? into rectangles of the form I'ch-’zl[aj, b;),
with b; — a; < 0. The final result will work when we restrict the
considerations to [0,1]7, but we include an extra regions to work with
half-open intervals in a lazy way.

From theorem 2.2, there exist scalars (a1, ..., vy) so that

sup [g(x) — h(x)| <<,
xeU

where h = vazl (—‘filR,--
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Our final constructed network f will be of the form:

f(x) = aigi(x),

1

where each g; will be a ReLU Network with 2 hidden layers and O(d)
neurons. Our goal is to show f[o 1 |f(x) — g(x)|dx < 2¢. That is to say:

I — gl < 2¢
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To this end, note that:

f —glh=Ilf =h+h—glh
<|[If = hllr+1lh - glh

=13 (e — gl +

< Z\u, 11r — gill1 + ¢

Then, we need to construct each g; such that [|1g — gil|1 < 22 -
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Fix the rectangle R; selected from the partition P. Then, Let

R,' = [al,bl) X [32, bg) X ..o X [ad,bd).
Set v > 0 to be a hyperparameter. For each j € {1,2,3,...,d},

z—(aj =) zZ -3 z— b z—(b+)
( S )0(7)0(7)—1—0( S );
1, if z€ [aj, bj)
=40, if z ¢ [aj — 7, bj +7)
[0,1], otherwise

gvj(z) =0

Plotof g, ,(2) , Plotof g, ,(2)

(a) Partition P of U (b) Plot of g(1,1)(z) (c) Plot of g(1,2)(z)
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Then, we define g; as:

gy=0 | gyjlg)—(d—1)
J
Note that

1, if x € [31, bl) X [32, b2) X ... X [ad,bd)
1r(x) =~ gi(x) = {0, if x ¢ [a1 — 7, b1+7) x ... X [ag — 7, bg +7)
[0,1], otherwise
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11~ = &illa

= [ 1s - gildx

[0,2)

:/ |1R,-gi|dX+/ \1R,-gi|dX+/ 1gr — gildx
Ri B\R; [0,2)7\B

<0+ N% (b —aj+2y) + N (b —2;) +0
=0(v)
where B = [a; — 7, b1 +7) X ... X [ag — 7, bg + 7).
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€

This means we can ensure ||1g — gil|1 < T
1

by choosing sufficiently

i

small ~, thus completing the proof.
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Visualisation
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Weakness of Previous Proof

The theorem above has 2 weakness:
@ 2 Hidden layers are used in the neural network

@ A specific activation function is used to approximate g
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Improvements on the previous theorem

In the previous theorem, we used 2 hidden layers to construct g,. In
constructing f, we had to approximate

X = ]-R,-(X) = l[al,bl]X..‘X[ad,bd](X)‘

If we had a way to approximate multiplication, we could instead
approximate

X — l[al,b1](x) X 1[327b2](X) X ... X l[adybd](x)'
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Introducing Universal Approximators

Can we approximate multiplication and then form a linear combination, all
with just one hidden layer?

YES!
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Definition of Universal Approximators

Definition 4 (Universal Approximators)

A class of functions F is an Universal Approximator over a compact set S

if for every continuous function g and a target accuracy ¢ > 0, there exists
f € F with

sup |f(x) — g(x)] <
XES

Notes:
e Compactness is necessary (sin(x))

@ Can be more succinctly written as some class being dense in all
continuous functions over compact sets.

How do we know if F is an universal approximator?
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Basis of Universal Approximation Theorem

classical Weierstrass theorem

(1885): Polynomials are
universal approximators

Stone-Weierstrass theorem
(1937): Any family of functions
satisfying some of the same
properties as polynomials will
also be a universal approximator

The Stone-Weierstrass theorem serves as a good tool to show if some F is
a universal approximator.

Aravinth Krishnan (Kansas State University) QEIl Minor Exam November 16, 2025 28 /50



Stone-Weierstrass Theorem (Folland 1999, Theorem 4.45)

Theorem 5 (Stone-Weierstrass)

Let F denote a class of functions and f € F be given as follows:
@ Each f € F is continuous
@ For every x € X, there exists f € F with f(x) #0

Q@ For every x # X', there exists f € F with f(x) # f(x') (That is to say
F separates points)

Q F is closed under multiplication and vector space operations (F is an
algebra)

Then, F is an universal approximator: For every continuous g : R — R
and ¢ > 0, there exists f € F with sup,¢o 1j¢ | (x) — g(x)| <
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Representation of Universal Approximators

Let
@ o — Activation Function
@ d — Input Dimension
@ m — Depth of Neural Network

Then, 7, q.m and F,; 4 be defined as follows:

Fodm:=Fdm:={x—a a(Wx+b):ac R, W cR" 9 bhcR™}

Fod = Fdg :=Umn>0Fs,dm
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Visualising F, 41 and F, 42

D1 o(WTx +b))
+

Wy Y\ V2L a,0(WTx +by)

Wig [\

W =(wy, ws, ..

le)

(a) Foa (b) Fo,d,2
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Examples of Universal Approximators

@ Example 1: Fcos 4 is an universal approximator

@ Example 2: Fexp g is an universal approximator
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Approximation near initialization and the Neural Tangent

Kernel

Now, we will consider networks close to their random initialisation. The
core idea is to compare a network:

fRIxRP - R
(x, W) = fu(x)

to its first order Taylor approximation at a random initialization W:

fo(x; W) = f(x; Wo) + (Vwf(x; Wo), W — Wp).
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The goal of this subsection is to:

@ We will show that near initialisation, with large width, f ~ f
(f is effectively linear near initialisation)

@ Show these neural networks near initialisation are already universal
approximators
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The Shallow Case

This is our shallow neural network:

j=1
1
== (ala(wl X) + aco(wy x) + ... + ama(vvmx)>
where
—w —
—wy =
W = . c RMX d’
—w] -

m

where o will either be a smooth activation or the ReLU, and we will treat
a € R™ as fixed and only allow W € R™* 9 to vary.
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Visualisation
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The first order Taylor Approximation at initialisation

Assume o is any univariate activation which is differentiable except on a

set of measure 0, and let Wy be the Gaussian initialisation. Then, the first
order Taylor Approximation at W = W is:

fo(X; W) = f(X' Wo) =+ <wa(X' Wo) W — W0>

\ﬁzal(g wo,x) + o (wojxT)(wj — wo )

f 2 aj([o(wgx) — o (wo ) wex] + o (o )w, x).
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Theorem

Now, we will see that f — f5, = 0 as m — .

Theorem 6

Ifo: R — R is f-smooth and |aj| < 1, and ||x||> < 1, then for any
parameters W,V € Rm* 9,

£ W) = folx; V)| < W - V||Z.

f|

Set V = Wp. Small || W — Wp|| means that the weight W/ is close to the
initialisation weights Wp. Then, the theorem tells us that as m — oo, our
neural network f at weight W/ gets closer and closer to the Taylor
approximation of our neural network initialised at weight Wj.
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|f(x; W) — fo(x; V)| = |f(x; W) — f(x; Vo)+ < Vi f(x; V),W -V >
1 m
< LS gl lo(w %) — o)
LSl o -t

— o (v x)xT (wj — v))|

i
m _ T 2
- 1 Zﬂwx /i X)
\/E
8 < 2
SW;HWJ_VJH

p
NG

W = VI
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So far, we have said that f — fy is small when the width is large.

QUESTION: We know that neural networks are universal approximators.
But when does it start having this property?

We will show that when the width is large, neural networks close to
initialisation, f, are already universal approximators:

@ We saw that 7 is approximately equal to some linear space, fy, which
is can be seen as a feature space

@ This allows us to consider the kernel corresponding to said feature
space and these allows us to bring in new tools to establish our claim
above.
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Key Definitions

Definition 7 (Kernel, Feature Map and Feature Space)

Let X be a non-empty set. Then, a function k : X x X — R is called a
kernel on X if there exists a R-Hilbert Space H and a map ¢ : X — H
such that for all X,X/ € X, we have

k(x,x') = <<D(x), ¢(x')> .

We call ¢ a feature map and # a feature space of k.
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Feature Map (Neural Network Setting)

V(s Wo) : x — V£(x; Wp) defines a feature mapping:
— alcr/(WOTlx)xT —
Vi(x; Wo) =

— amal(WOme)xT —

Note that x € R and f(x; Wp) € R™* 9 =2 R™I (d << md)
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Kernel (Neural Network Setting)

km(x, %) == (Vwf(x, Wo), Vwf(y, Wo))
alXTU/(WlTOX)/\/E alyTUI(ero)/)/\/E

amx" 0 (W 0x)/v/m/)  \amyT o' (w;oy)/v/m

/

1 m
= 3" a2 (x0 (wlox), yo (wfoy))

Justification for \/E Kernel is now an average, not a sum. We can expect
a limit as m — oo.

Aravinth Krishnan (Kansas State University) QEIl Minor Exam November 16, 2025 43 /50



TASK: Show functions near initialisation are universal approximators.
Define ‘H as follows:

1
X:=<{xeR:|x :1,X:}
{xereiiidi=10 = 7

m
H = X'—)ZO&jk(X,Xj) m>0,05 €eR,x;€ X
j=1

‘H is nothing more than the set of infinite width neural networks near its
initialization, each infinite width neural network represented as a linear

combination of kernels. (Showing why that's the case it beyond the scope
of the minor.)
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Theorem 8

H is a universal approximator over X; that is to say, for every continuous
g :RY = R and every € > 0, there exists a f € H with

supxex [g(x) — F(x)] <.
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Let U:={ue RI71: |[u[> <1}, and k be the kernel function as defined
below:

k(u,u') == f(uTu)

flz) = z+ % B (z+ %)arccos(z + %)
T2 27 '

We shall show that k is an universal approximator over U.
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Note that arccos has the maclaurin series
7r (2k)!  z?k+1
arccos(z) = 5= Z PR 2k T
k>0
which is convergent over z € [—1,1]. Note every term is positive (adding
the bias term ensured this).
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Proof

Using the following collary,

Theorem 9 (Universal Taylor Kernels)

Fix an r € (0,00] and a C* function f : (—r,r) — R that can be
expanded into its taylor series at 0,

f(t) = ant" t € (—r,r).
n=0

Let X .= {x € RY: ||x||2 < \/r}. If we have a, > 0 for all n >0, then k
given by:

k(x,x ) = f(< x,x >)

is a universal kernel on every compact subset of X .

we can see that k is an universal approximator on U.
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Since k is an universal approximator on U, k is also an universal
approximator on QU and thus, the kernel is an universal approximator over
X.
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