

Classical Results in Approximation Theory

Aravindh Krishnan

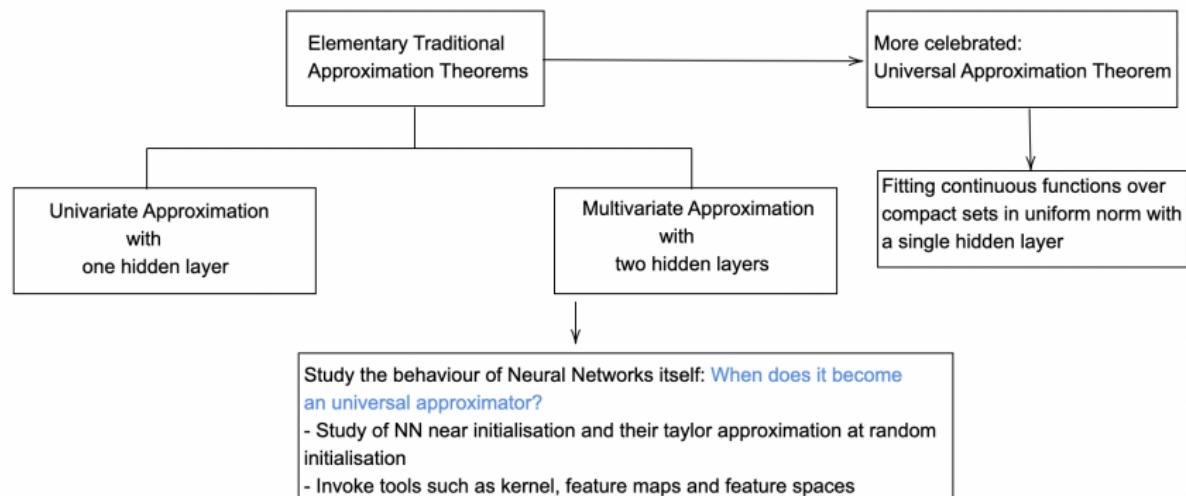
KANSAS STATE UNIVERSITY

QEII Minor Exam

Dec 2024

Goal of this Presentation

Provide a roadmap of different classical and modern theorems in the Approximation theory of Neural Networks

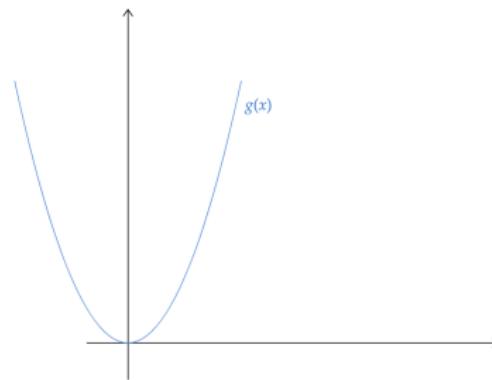


Approximation of univariate real-valued functions with neural networks

Theorem 1

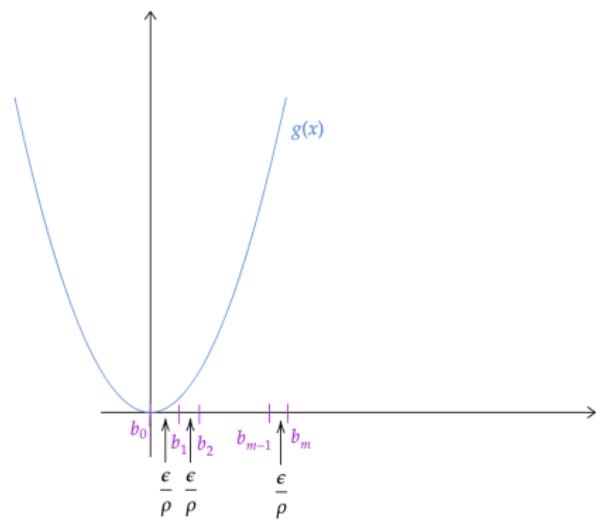
Suppose $g : \mathbb{R} \rightarrow \mathbb{R}$ is ρ -Lipschitz. For any $\epsilon > 0$, there exists a 2 layer network f with $\lceil \frac{\rho}{\epsilon} \rceil$ threshold nodes $z \mapsto \mathbf{1}_{[z \geq 0]}$ such that

$$\sup_{x \in [0,1]} |f(x) - g(x)| \leq \epsilon.$$



Proof

- Discretise the x -axis interval $[0, 1]$ using the step size $\frac{\epsilon}{\rho}$
- Let m be the number of subintervals in $[0, 1]$. So, $m := \lceil \frac{\rho}{\epsilon} \rceil$
- Let $b_i := \frac{i\epsilon}{\rho}$. So, the interval $[0, 1]$ is partitioned by $P = \{b_0, b_1, b_2, \dots, b_{m-1}\}$ for $i \in \{0, 1, 2, \dots, m - 1\}$.



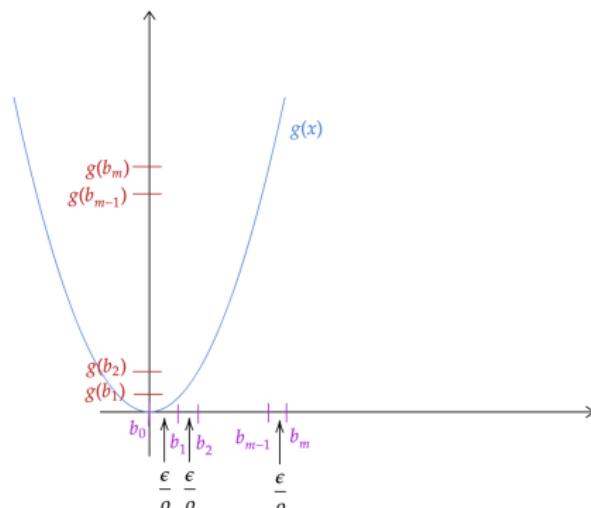
Proof

Define:

$$a_0 := g(0),$$

and

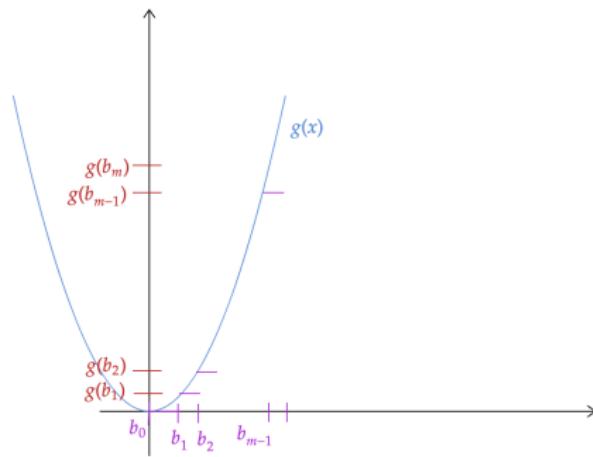
$$a_i := g(b_i) - g(b_{i-1}).$$



Proof

We define f as follows

$$f(x) := \sum_{i=0}^{m-1} a_i \mathbf{1}_{x \geq b_i}$$



Proof

We shall prove the following:

- satisfies the condition

$$\sup_{x \in [0,1]} |\mathbf{f}(x) - \mathbf{g}(x)| \leq \epsilon,$$

- $\mathbf{f}(x)$ can be represented as a 2 layer network with $\lceil \frac{\rho}{\epsilon} \rceil$ threshold nodes.

Proof

$$\begin{aligned} |\mathbf{g}(x) - \mathbf{f}(x)| &= |\mathbf{g}(x) - \mathbf{g}(b_k) + \mathbf{g}(b_k) - \mathbf{f}(b_k) + \mathbf{f}(b_k) - \mathbf{f}(x)| \\ &\leq |\mathbf{g}(x) - \mathbf{g}(b_k)| + |\mathbf{g}(b_k) - \mathbf{f}(b_k)| + |\mathbf{f}(b_k) - \mathbf{f}(x)| \\ &= \rho|x - b_k| + |\mathbf{g}(b_k) - \sum_{i=0}^k a_i| + 0 \\ &\leq \rho\left(\frac{\epsilon}{\rho}\right) + |\mathbf{g}(b_k) - \mathbf{g}(b_0) - \sum_{i=1}^k (\mathbf{g}(b_i) - \mathbf{g}(b_{i-1}))| \\ &= \epsilon. \end{aligned}$$

Hence, we have showed that \mathbf{f} satisfies the condition

$$\sup_{x \in [0,1]} |\mathbf{f}(x) - \mathbf{g}(x)| \leq \epsilon.$$

f as a Neural Network

$\mathbf{1}_{x \geq b} = H(x - b)$, where $H(x)$ denotes the Heaviside activation function:

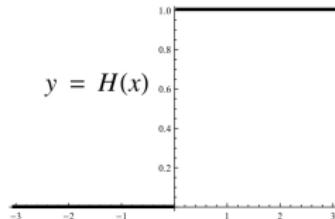
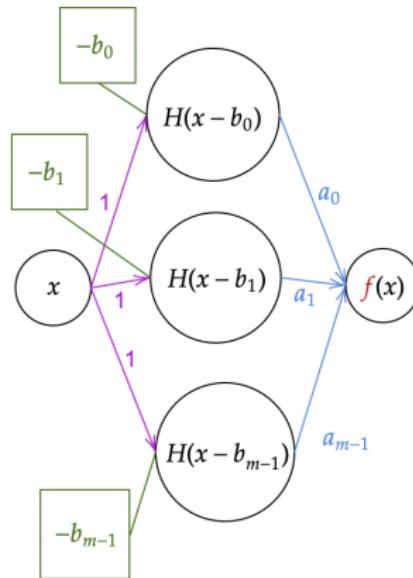


Figure 1: Heaviside Function

So,

$$\begin{aligned} \mathbf{f}(x) &:= \sum_{i=0}^{m-1} a_i \mathbf{1}_{x \geq b_i} \\ &= \sum_{i=0}^{m-1} a_i H(x - b_i) \end{aligned}$$

Visual Representation of f as a Neural Network



We can see that there are m neurons in the hidden layer. Thus, the depth of the network is $m = \lceil \frac{p}{\epsilon} \rceil$.

Building a Step function for the Multivariate Case

Theorem 2

Let $g : \mathbb{R}^d \rightarrow \mathbb{R}$ be a continuous function and an $\epsilon > 0$ be given, and choose $\delta > 0$ so that $\|x - x'\|_\infty \leq \delta$ implies $|g(x) - g(x')| \leq \epsilon$. Let any set $U \subset \mathbb{R}^d$ be given, along with a partition P of U into rectangles (product of intervals) $P = (R_1, R_2, \dots, R_N)$ with all sides lengths not exceeding δ . Then, there exist scalars $(\alpha_1, \dots, \alpha_N)$ such that

$$\sup_{x \in U} |g(x) - h(x)| \leq \epsilon,$$

where $h(x) = \sum_{i=1}^N \alpha_i \mathbf{1}_{R_i}(x)$.

Intuition

For each R_i in the partition P , pick an arbitrary $x_i \in R_i$ and set $\alpha_i := g(x_i)$. Then,

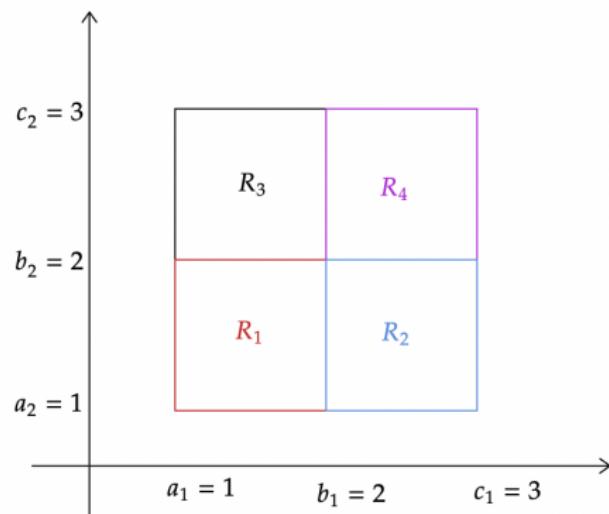
$$h(x) = \sum_{i=1}^N \alpha_i \mathbf{1}_{R_i}(x) = \sum_{i=1}^N g(x_i) \mathbf{1}_{R_i}(x)$$

Now, we have to show that the function h constructed from the set of α_i 's arbitrarily picked satisfies the condition:

$$\sup_{x \in U} |g(x) - h(x)| \leq \epsilon.$$

Proof

$$\sup_{x \in U} |\mathbf{g}(x) - \mathbf{h}(x)| = \sup_{i \in \{1, \dots, N\}} \sup_{x \in R_i} |\mathbf{g}(x) - \mathbf{h}(x)|$$



Proof

Thus, we have:

$$\begin{aligned}\sup_{x \in U} |\mathbf{g}(x) - \mathbf{h}(x)| &= \sup_{i \in \{1, \dots, N\}} \sup_{x \in R_i} |\mathbf{g}(x) - \mathbf{h}(x)| \\ &= \sup_{i \in \{1, \dots, N\}} \sup_{x \in R_i} |\mathbf{g}(x) - \mathbf{g}(x_i) + \mathbf{g}(x_i) - \mathbf{h}(x)| \\ &\leq \sup_{i \in \{1, \dots, N\}} \sup_{x \in R_i} (|\mathbf{g}(x) - \mathbf{g}(x_i)| + |\mathbf{g}(x_i) - \mathbf{h}(x)|) \\ &\leq \sup_{i \in \{1, \dots, N\}} \sup_{x \in R_i} (\epsilon + |\mathbf{g}(x_i) - \alpha_i|) \\ &= \epsilon.\end{aligned}$$

Theorem

Theorem 3

Let $\mathbf{g} : \mathbb{R}^d \rightarrow \mathbb{R}$ be a continuous function and an $\epsilon > 0$ be given, and choose $\delta > 0$ so that $\|x - x'\|_\infty \leq \delta$ implies $|\mathbf{g}(x) - \mathbf{g}(x')| \leq \epsilon$. Then, there exists a 3-layered network \mathbf{f} with $\Omega(\frac{1}{\delta^d})$ ReLU with

$$\int_{[0,1]^d} |\mathbf{f}(x) - \mathbf{g}(x)| dx \leq 2\epsilon.$$

Proof

Let P denote a partition of $[0, 2]^d$ into rectangles of the form $\prod_{j=1}^d [a_j, b_j)$, with $b_j - a_j \leq \delta$. The final result will work when we restrict the considerations to $[0, 1]^d$, but we include an extra regions to work with half-open intervals in a lazy way.

From theorem 2.2, there exist scalars $(\alpha_1, \dots, \alpha_N)$ so that

$$\sup_{x \in U} |\mathbf{g}(x) - \mathbf{h}(x)| \leq \epsilon,$$

where $\mathbf{h} = \sum_{i=1}^N \alpha_i \mathbf{1}_{R_i}$.

Proof

Our final constructed network f will be of the form:

$$f(x) := \sum_i \alpha_i g_i(x),$$

where each g_i will be a ReLU Network with 2 hidden layers and $\mathcal{O}(d)$ neurons. Our goal is to show $\int_{[0,1]^d} |f(x) - g(x)| dx \leq 2\epsilon$. That is to say:

$$\|f - g\|_1 \leq 2\epsilon$$

Proof

To this end, note that:

$$\begin{aligned} \|\mathbf{f} - \mathbf{g}\|_1 &= \|\mathbf{f} - \mathbf{h} + \mathbf{h} - \mathbf{g}\|_1 \\ &\leq \|\mathbf{f} - \mathbf{h}\|_1 + \|\mathbf{h} - \mathbf{g}\|_1 \\ &= \left\| \sum_i \alpha_i (\mathbf{1}_{R_i} - \mathbf{g}_i) \right\|_1 + \epsilon \\ &\leq \sum_i |\alpha_i| \cdot \|\mathbf{1}_{R_i} - \mathbf{g}_i\|_1 + \epsilon \end{aligned}$$

Then, we need to construct each \mathbf{g}_i such that $\|\mathbf{1}_{R_i} - \mathbf{g}_i\|_1 \leq \frac{\epsilon}{\sum_i \alpha_i}$.

Proof

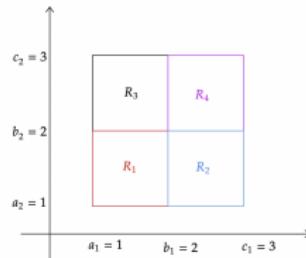
Fix the rectangle R_i selected from the partition P . Then, Let

$$R_i := [a_1, b_1) \times [a_2, b_2) \times \dots \times [a_d, b_d).$$

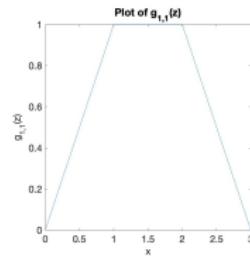
Set $\gamma > 0$ to be a hyperparameter. For each $j \in \{1, 2, 3, \dots, d\}$,

$$g_{\gamma, j}(z) = \sigma\left(\frac{z - (a_j - \gamma)}{\gamma}\right) - \sigma\left(\frac{z - a_j}{\gamma}\right) - \sigma\left(\frac{z - b_j}{\gamma}\right) + \sigma\left(\frac{z - (b_j + \gamma)}{\gamma}\right),$$

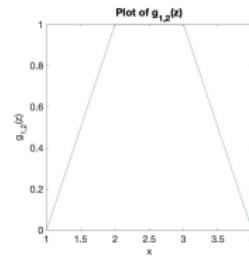
$$= \begin{cases} 1, & \text{if } z \in [a_j, b_j) \\ 0, & \text{if } z \notin [a_j - \gamma, b_j + \gamma] \\ [0, 1], & \text{otherwise} \end{cases}$$



(a) Partition P of U



(b) Plot of $g(1,1)(z)$



(c) Plot of $g(1,2)(z)$

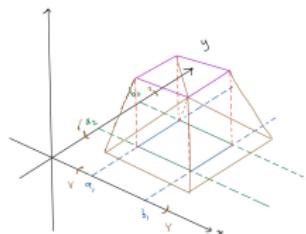
Proof

Then, we define g_i as:

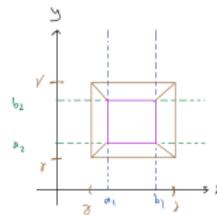
$$g_\gamma = \sigma \left(\sum_j g_{\gamma,j}(x_j) - (d - 1) \right)$$

Note that

$$\mathbf{1}_{R_i}(x) \approx g_i(x) = \begin{cases} 1, & \text{if } x \in [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_d, b_d] \\ 0, & \text{if } x \notin [a_1 - \gamma, b_1 + \gamma] \times \dots \times [a_d - \gamma, b_d + \gamma] \\ [0, 1], & \text{otherwise} \end{cases}$$



(a) $g_\gamma(3D)$

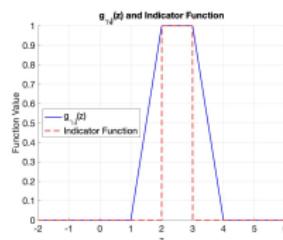


(b) $g_\gamma(2D)$

Proof

$$\begin{aligned}& \|\mathbf{1}_{R_i} - \mathbf{g}_i\|_1 \\&= \int_{[0,2)^d} |\mathbf{1}_{R_i} - \mathbf{g}_i| dx \\&= \int_{R_i} |\mathbf{1}_{R_i} - \mathbf{g}_i| dx + \int_{B \setminus R_i} |\mathbf{1}_{R_i} - \mathbf{g}_i| dx + \int_{[0,2)^d \setminus B} |\mathbf{1}_{R_i} - \mathbf{g}_i| dx \\&\leq 0 + \prod_{j=1}^d (b_j - a_j + 2\gamma) + \prod_{j=1}^d (b_j - a_j) + 0 \\&= \mathcal{O}(\gamma)\end{aligned}$$

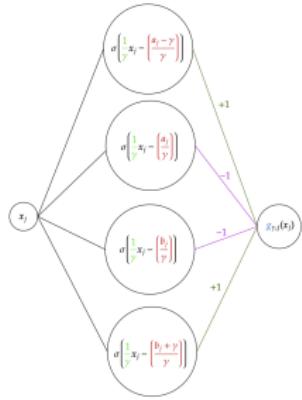
where $B = [a_1 - \gamma, b_1 + \gamma] \times \dots \times [a_d - \gamma, b_d + \gamma]$.



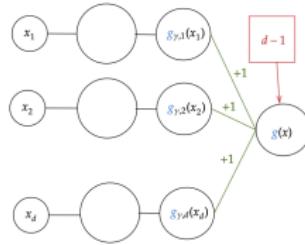
Proof

This means we can ensure $\|1_{R_i} - g_i\|_1 \leq \frac{\epsilon}{\sum_i \alpha_i}$ by choosing sufficiently small γ , thus completing the proof.

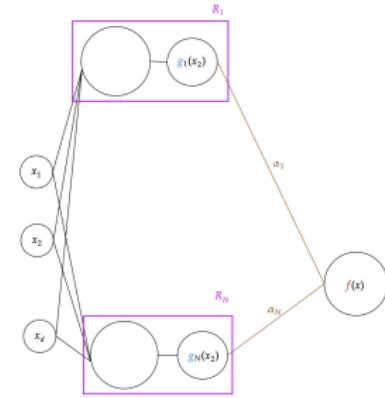
Visualisation



(a) $g_{\gamma,j}(x_j)$



(b) $g(x)$



(c) $f(x)$

Weakness of Previous Proof

The theorem above has 2 weakness:

- 2 Hidden layers are used in the neural network
- A specific activation function is used to approximate g

Improvements on the previous theorem

In the previous theorem, we used 2 hidden layers to construct g_γ . In constructing f , we had to approximate

$$x \mapsto \mathbf{1}_{R_i}(x) = \mathbf{1}_{[a_1, b_1] \times \dots \times [a_d, b_d]}(x).$$

If we had a way to approximate multiplication, we could instead approximate

$$x \mapsto \mathbf{1}_{[a_1, b_1]}(x) \times \mathbf{1}_{[a_2, b_2]}(x) \times \dots \times \mathbf{1}_{[a_d, b_d]}(x).$$

Introducing Universal Approximators

Can we approximate multiplication and then form a linear combination, all with just one hidden layer?

YES!

Definition of Universal Approximators

Definition 4 (Universal Approximators)

A class of functions \mathcal{F} is an Universal Approximator over a compact set S if for every continuous function g and a target accuracy $\epsilon > 0$, there exists $f \in \mathcal{F}$ with

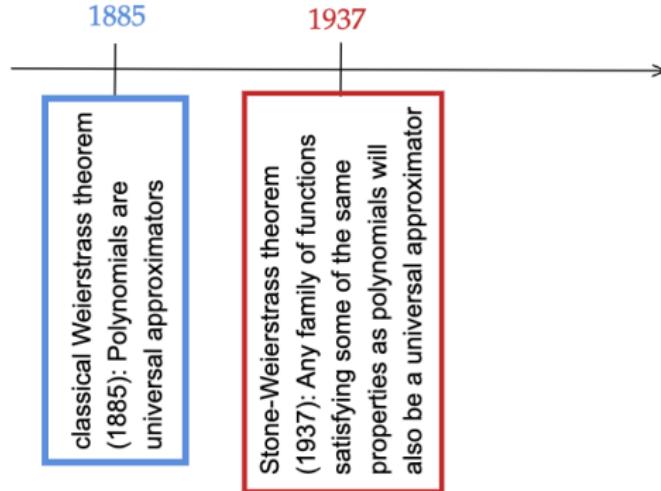
$$\sup_{x \in S} |f(x) - g(x)| \leq \epsilon.$$

Notes:

- Compactness is necessary ($\sin(x)$)
- Can be more succinctly written as some class being dense in all continuous functions over compact sets.

How do we know if \mathcal{F} is an universal approximator?

Basis of Universal Approximation Theorem



The Stone-Weierstrass theorem serves as a good tool to show if some \mathcal{F} is a universal approximator.

Theorem 5 (Stone-Weierstrass)

Let \mathcal{F} denote a class of functions and $f \in \mathcal{F}$ be given as follows:

- ① Each $f \in \mathcal{F}$ is continuous
- ② For every $x \in X$, there exists $f \in \mathcal{F}$ with $f(x) \neq 0$
- ③ For every $x \neq x'$, there exists $f \in \mathcal{F}$ with $f(x) \neq f(x')$ (That is to say \mathcal{F} separates points)
- ④ \mathcal{F} is closed under multiplication and vector space operations (\mathcal{F} is an algebra)

Then, \mathcal{F} is an universal approximator: For every continuous $g : \mathbb{R}^d \rightarrow \mathbb{R}$ and $\epsilon > 0$, there exists $f \in \mathcal{F}$ with $\sup_{x \in [0,1]^d} |f(x) - g(x)| \leq \epsilon$.

Representation of Universal Approximators

Let

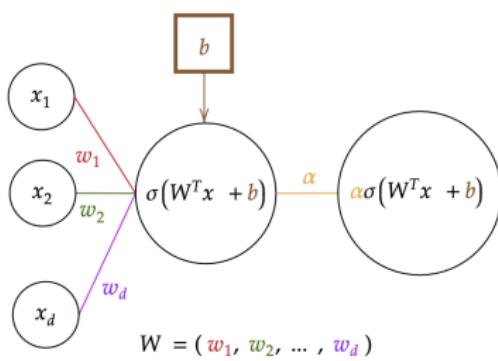
- $\sigma \rightarrow$ Activation Function
- $d \rightarrow$ Input Dimension
- $m \rightarrow$ Depth of Neural Network

Then, $\mathcal{F}_{\sigma,d,m}$ and $\mathcal{F}_{\sigma,d}$ be defined as follows:

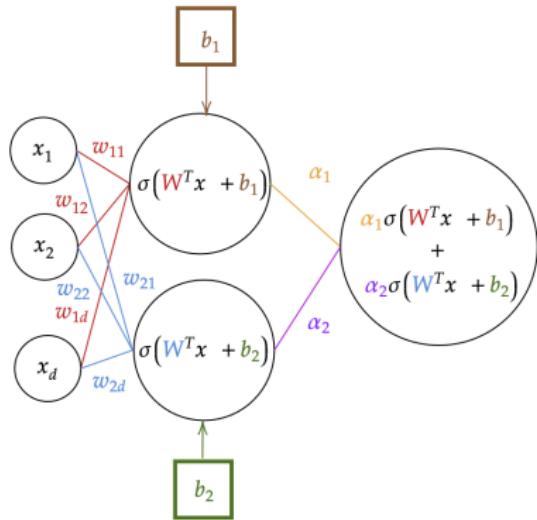
$$\mathcal{F}_{\sigma,d,m} := \mathcal{F}_{d,m} := \{x \mapsto a^T \sigma(Wx + b) : a \in \mathbb{R}^m, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m\}$$

$$\mathcal{F}_{\sigma,d} := \mathcal{F}_d := \bigcup_{m \geq 0} \mathcal{F}_{\sigma,d,m}$$

Visualising $\mathcal{F}_{\sigma,d,1}$ and $\mathcal{F}_{\sigma,d,2}$



(a) $\mathcal{F}_{\sigma,d,1}$



(b) $\mathcal{F}_{\sigma,d,2}$

Examples of Universal Approximators

- Example 1: $\mathcal{F}_{\cos,d}$ is an universal approximator
- Example 2: $\mathcal{F}_{\exp,d}$ is an universal approximator

Approximation near initialization and the Neural Tangent Kernel

Now, we will consider networks close to their random initialisation. The core idea is to compare a network:

$$\begin{aligned}\textcolor{red}{f} : \mathbb{R}^d \times \mathbb{R}^p &\rightarrow \mathbb{R} \\ (x, \textcolor{green}{W}) &\mapsto f_{\textcolor{green}{W}}(x)\end{aligned}$$

to its first order Taylor approximation at a random initialization W_0 :

$$f_0(x; \textcolor{green}{W}) := \textcolor{red}{f}(x; W_0) + \langle \nabla_{\textcolor{green}{W}} \textcolor{red}{f}(x; W_0), \textcolor{green}{W} - W_0 \rangle.$$

Goals

The goal of this subsection is to:

- We will show that near initialisation, with large width, $f \approx f_0$ (f is effectively linear near initialisation)
- Show these neural networks near initialisation are already universal approximators

The Shallow Case

This is our shallow neural network:

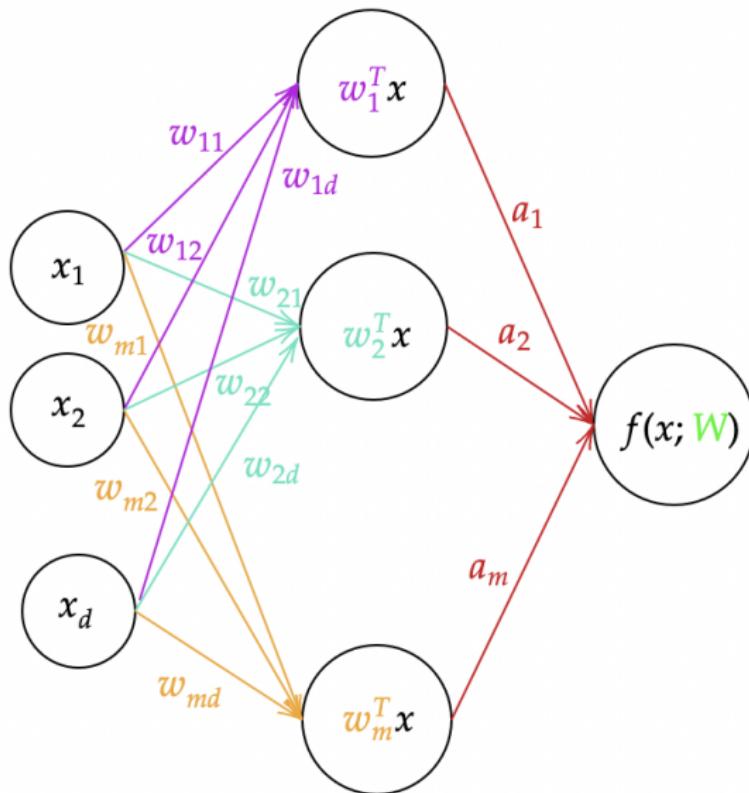
$$\begin{aligned} f(x; W) &:= \frac{1}{\sqrt{m}} \sum_{j=1}^m a_j \sigma(w_j^T x) \\ &= \frac{1}{\sqrt{m}} \left(a_1 \sigma(w_1^T x) + a_2 \sigma(w_2^T x) + \dots + a_m \sigma(w_m^T x) \right) \end{aligned}$$

where

$$W := \begin{pmatrix} \leftarrow w_1^T \rightarrow \\ \leftarrow w_2^T \rightarrow \\ \cdot \\ \cdot \\ \leftarrow w_m^T \rightarrow \end{pmatrix} \in \mathbb{R}^{m \times d},$$

where σ will either be a smooth activation or the ReLU, and we will treat $a \in \mathbb{R}^m$ as fixed and only allow $W \in \mathbb{R}^{m \times d}$ to vary.

Visualisation



The first order Taylor Approximation at initialisation

Assume σ is any univariate activation which is differentiable except on a set of measure 0, and let W_0 be the Gaussian initialisation. Then, the first order Taylor Approximation at $\mathbf{W} = W_0$ is:

$$\begin{aligned}f_0(x; \mathbf{W}) &= f(x; W_0) + \langle \nabla_{\mathbf{W}} f(x; W_0), \mathbf{W} - W_0 \rangle \\&= \frac{1}{\sqrt{m}} \sum_{j=1}^m a_j (\sigma(w_{0,j}^T x) + \sigma'(w_{0,j} x^T)(w_j - w_{0,j})) \\&= \frac{1}{\sqrt{m}} \sum_{j=1}^m a_j ([\sigma(w_{0,j}^T x) - \sigma'(w_{0,j}) w_{0,j}^T x] + \sigma'(w_{0,j}) w_j^T x).\end{aligned}$$

Theorem

Now, we will see that $f - f_0 \rightarrow 0$ as $m \rightarrow \infty$.

Theorem 6

If $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is β -smooth and $|a_j| \leq 1$, and $\|x\|_2 \leq 1$, then for any parameters $W, V \in \mathbb{R}^{m \times d}$,

$$|f(x; W) - f_0(x; V)| \leq \frac{\beta}{2\sqrt{m}} \|W - V\|_F^2.$$

Set $V = W_0$. Small $\|W - W_0\|$ means that the weight W is close to the initialisation weights W_0 . Then, the theorem tells us that as $m \rightarrow \infty$, our neural network f at weight W gets closer and closer to the Taylor approximation of our neural network initialised at weight W_0 .

Proof

$$\begin{aligned} |\mathbf{f}(x; \mathbf{W}) - f_0(x; V)| &= |\mathbf{f}(x; \mathbf{W}) - \mathbf{f}(x; V_0) + \langle \nabla_{\mathbf{W}} \mathbf{f}(x; V), \mathbf{W} - V \rangle| \\ &\leq \frac{1}{\sqrt{m}} \sum_{j=1}^m |a_j| \cdot |\sigma(w_j^T x) - \sigma(v_j^T x) \\ &\quad - \sigma'(v_j^T x) x^T (w_j - v_j)| \\ &\leq \frac{1}{\sqrt{m}} \sum_{j=1}^m \frac{\beta (w_j^T x - v_j^T x)^2}{2} \\ &\leq \frac{\beta}{2\sqrt{m}} \sum_{j=1}^m \|w_j - v_j\|^2 \\ &= \frac{\beta}{2\sqrt{m}} \|\mathbf{W} - V\|_F^2 \end{aligned}$$

Next Goal

So far, we have said that $f - f_0$ is small when the width is large.

QUESTION: We know that neural networks are universal approximators. But when does it start having this property?

We will show that when the width is large, neural networks close to initialisation, f , are already universal approximators:

- We saw that f is approximately equal to some linear space, f_0 , which is can be seen as a feature space
- This allows us to consider the kernel corresponding to said feature space and these allows us to bring in new tools to establish our claim above.

Key Definitions

Definition 7 (Kernel, Feature Map and Feature Space)

Let X be a non-empty set. Then, a function $k : X \times X \rightarrow \mathbb{R}$ is called a **kernel** on X if there exists a \mathbb{R} -Hilbert Space \mathcal{H} and a map $\Phi : X \rightarrow \mathcal{H}$ such that for all $x, x' \in X$, we have

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle.$$

We call Φ a **feature map** and \mathcal{H} a **feature space** of k .

Feature Map (Neural Network Setting)

$\nabla \mathbf{f}(\cdot; W_0) : x \mapsto \nabla \mathbf{f}(x; W_0)$ defines a feature mapping:

$$\nabla \mathbf{f}(x; W_0) = \begin{pmatrix} \leftarrow a_1 \sigma'(w_{0,1}^T x) x^T \rightarrow \\ \cdot \\ \cdot \\ \cdot \\ \leftarrow a_m \sigma'(w_{0,m}^T x) x^T \rightarrow \end{pmatrix}.$$

Note that $x \in \mathbb{R}^d$ and $\mathbf{f}(x; W_0) \in \mathbb{R}^{m \times d} \cong \mathbb{R}^{md}$ ($d \ll md$)

Kernel (Neural Network Setting)

$$\begin{aligned}k_m(x, x') &:= \langle \nabla_W f(x, W_0), \nabla_W f(y, W_0) \rangle \\&= \left\langle \begin{pmatrix} a_1 x^T \sigma'(w_{1,0}^T x) / \sqrt{m} \\ \vdots \\ \vdots \\ a_m x^T \sigma'(w_{m,0}^T x) / \sqrt{m} \end{pmatrix}, \begin{pmatrix} a_1 y^T \sigma'(w_{1,0}^T y) / \sqrt{m} \\ \vdots \\ \vdots \\ a_m y^T \sigma'(w_{m,0}^T y) / \sqrt{m} \end{pmatrix} \right\rangle \\&= \frac{1}{m} \sum_{j=1}^m a_j^2 \langle x \sigma'(w_{j,0}^T x), y \sigma'(w_{j,0}^T y) \rangle \\&= x^T y \left[\frac{1}{m} \sum_{j=1}^m \sigma'(w_{j,0}^T x) \sigma'(w_{j,0}^T y) \right] \in \mathbb{R}\end{aligned}$$

Justification for $\frac{1}{\sqrt{m}}$: Kernel is now an average, not a sum. We can expect a limit as $m \rightarrow \infty$.

Theorem

TASK: Show functions near initialisation are universal approximators.

Define \mathcal{H} as follows:

$$\mathcal{X} := \left\{ x \in \mathbb{R}^d : \|x\| = 1, x_d = \frac{1}{\sqrt{2}} \right\}$$

$$\mathcal{H} := \left\{ x \mapsto \sum_{j=1}^m \alpha_j k(x, x_j) : m \geq 0, \alpha_j \in \mathbb{R}, x_j \in \mathcal{X} \right\}$$

\mathcal{H} is nothing more than the set of infinite width neural networks near its initialization, each infinite width neural network represented as a linear combination of kernels. (Showing why that's the case is beyond the scope of the minor.)

Theorem 8

\mathcal{H} is a universal approximator over \mathcal{X} ; that is to say, for every continuous $\mathbf{g} : \mathbb{R}^d \rightarrow \mathbb{R}$ and every $\epsilon > 0$, there exists a $\mathbf{f} \in \mathcal{H}$ with $\sup_{x \in \mathcal{X}} |\mathbf{g}(x) - \mathbf{f}(x)| \leq \epsilon$.

Proof

Let $U := \{u \in \mathbb{R}^{d-1} : \|u\|^2 \leq \frac{1}{2}\}$, and k be the kernel function as defined below:

$$k(u, u') := f(u^T u')$$

$$f(z) := \frac{z + \frac{1}{2}}{2} - \frac{(z + \frac{1}{2}) \arccos(z + \frac{1}{2})}{2\pi}.$$

We shall show that k is an universal approximator over U .

Proof

Note that \arccos has the maclaurin series

$$\arccos(z) = \frac{\pi}{2} - \sum_{k \geq 0} \frac{(2k)!}{2^{2k}(k!)^2} \frac{z^{2k+1}}{2k+1},$$

which is convergent over $z \in [-1, 1]$. Note every term is positive (adding the bias term ensured this).

Proof

Using the following collary,

Theorem 9 (Universal Taylor Kernels)

Fix an $r \in (0, \infty]$ and a C^∞ function $f : (-r, r) \rightarrow \mathbb{R}$ that can be expanded into its taylor series at 0,

$$f(t) = \sum_{n=0}^{\infty} a_n t^n, t \in (-r, r).$$

Let $\mathcal{X} := \{x \in \mathbb{R}^d : \|x\|_2 < \sqrt{r}\}$. If we have $a_n > 0$ for all $n \geq 0$, then k given by:

$$k(x, x') := f(\langle x, x' \rangle)$$

is a universal kernel on every compact subset of \mathcal{X} .

we can see that k is an universal approximator on U .

Proof

Since k is an universal approximator on U , k is also an universal approximator on ∂U and thus, the kernel is an universal approximator over \mathcal{X} .

The end

